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STUDY OF CRACK OPENING USING THE WEIGHTING FUNCTIONS METHOD* 

O.G. RYBAKINA 

Some results of calculations of the opening of rectilinear, disc-like 
cracks under the action of a given system of forces, are given in /l-3/. 
A study of the opening of internal and surface cracks of more complex form 
is of interest, since in a number of cases it enables one to determine the 
depth of the crack from its known opening at the surface. 

Formulas are obtained for the opening of elliptical, internal or 
surface cracks which occur when the body is acted upon by an arbitrary 
static load symmetrical about the plane of the crack. 

1. Let us consider an elastic body with a rectilinear skew crack O<X< 1, internal 
or emerging at the surface 5 = 0. A weighting functions (WF) method was proposed in /4/ 
for computing the stress intensity factors ~SIF) at the crack tip, and the possibility of 
using the method to determine the displacement field was suggested. When the elastic defor- 
mationenergy w(t)and the displacement of the upper edge of the crack v&r, I) are both known 
for a certain external load, the WE' can be found using the formula /4/ 

where E’ = E/(1 - v”) for plane deformation, E’ = E for the state of plane stress, E is the 
modulus of elasticity, v is Poisson's ratio and h(x,l) is independent of the type of loading. 

We havethefollowing formula for the SIF K(1) at the tip s = 1: 

K(Z)==&X)h(X, Z)CZZ (4.2) 
0 
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where s(X) denotes the arbitrary distribution of stresses applied to the crack edges, we 
also know that 

K" (1) = E'BWli)l 

This enables us to rewrite (1.1) in the form 
(2.3) 

h (r, 1) = 'I, (E'ilr (E)) au (I, q/al (l-4) 

When the crack is internal, we have v (0, l)= 0, and this leads, according to (1.4), to 
h (0, I) = 0. 

Thus, as was shown in /4/, when K(l) and v(x, 1) are known, then no matter what the 
external load, formulas (1.2) and (1.4) will enable us to determine K(Z) for any function 
s(s)- 

Let us now turn our attention to the problem of determining the displacement of the 
crack edge, and obtain v(x, 1) from (1.4), taking into account the fact that ~(1, I)= 0. we 
will have 

(1.5) 

Formulas (1.2) and (1.5) enable us to determine the opening of a crack when o(s), is 
arbitrary, provided that the WF h(x, I) is known. 

We note the following. Let us assume that concentrated unit forces are applied symmetri- 
cally totheupper and lower edge of the crack, at a distance 5 from the origin of coordinates, 
i.e. O(Z)= S(z- 6). where &(z- 6) is the Dirac function. Denoting by K,(L,Z) the SIF at the 
tip x=1 corresponding to the concentrated unit forces, we obtain from (1.2) the relation 
&fLZ)=2hfl;,1) whose substitution into (1.5) yields the formula 

f 
“(Z,l)== & K(t)Ko(r,t)df s 

x 
V-61 

obtained earlier by Paris /l/ by a different method. Formulas (1.2) and (1.5) represent a 
specific example of formula (1.6) in the case when K(1) and K,(t,Z) are determined using the 
weighting functions method. However, the derivation of (1.5) using the above 
independent interest, as it can be generalized to the case of a crack of more 

Substituting (1.2) into (1.5) we obtain 

and this yields 

I 
~(~,I)=~SLT(E)~(~,~,I,~~. fkLt)= i Q,t)h(E,t,dt 

0 nlax w. 5) 

Let us apply formulas (1.8) to the problem of a plane with a rectilinear 
The WF given in /4/ for the crack tip h== 1 has the form 

h(r, 2) = LV& 1/z 

Calculations using the second formula of (1.8) yield 

method is of 
complex form. 

(1.7) 

(1.8) 

skew crack. 

and the first formula of (1.8) leads to the expression for v(z.2) already obtained in /2/. 

2. Let us consider a strip with a single notch O;rSx< 1 emerging at the surface 
5 ='o. In this case the WF has the form (H is the width of the strip) /5/ 

mj=Aj+B,hS+C$.a, j=i, 2; O<h,<0,5; ),=EIH 

Al = 0,6147, B1 = 17,1&i-4, Cl = 8,7822 

Aa = 0,2502, BI = 3,2889, C, = 70,0444 
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Let us specify the stress at the crack edges in the form of a polynomial in x(& are 
known function of 2) 

Then we obtain from (1.7) the displacement of the edge which at the strip surface when 
s=o, takes the simple form 

The values of ~(0, E) fox the extension and flexure of the strip are given in /l/. 
Assuming that DO = uO, D, = 0 when k>O (extension) and D, = a,(1 -2h), D,= Zff,,h, DI: = 0 
when k> 1 (flexture), we obtain from (2.1) the values for ~(0, Z), which are identical with 
those given in /l/. 

3. Let us consider a disc-like crack of radius a in a body acted upon by an axisymmetric 
load. Repeating the arguments of Sect.1 we obtain for the WF, SIF and the displacement of the 
crack edge 

(A = [(P - r*) (P - %*)I’/*) 

Note that the last formula can be transformed to that given in /2/, by making the change 
of variable t = @sina in the inner integrals and changing the order of integration. 

Using elliptic integrals of the first kind, we reduce v(r, a) to the form 

n = min(& r), M = mar (5. r) 

In particular, for the centre of the crack edge we have 

a 

u (0, a) = & S (I (5) arccos $ dz 
0 

(3.1) 

Using the results in /3/, we can show that formula (3.1) can be generalized to the case 
of a non-axisymmetric load, i.e. a= u(r, 8). Then the function a(%) in (3.1) will be replaced 

by 

4. Let us now consider the case of an internal crack bounded by an ellipse L with centre 
at the origin of coordinates, and the semi-axesa,, a, (~,<a,,). The stresses a,@, y) are 
applied at the crack edges. We assume that 0,(x, y) is an even function of z and y. Following 
./6/, we utilize the RWS values of the SIR at the crack edge, assuming that 

a:,,= ’ -KKadA, 8A,,y=rcay.r&ax,!, 
6% Y 

with ir, and K, depending on the variation in the parameters a, and a# respectively. 
The WE' corresponding to the parameters a, and ay, are determined from the formulas 

and are independent of the load. For Esy Kj, we have the formulas (A is the surface of 
ellipse) 

/W 

(4.1) 

the 
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Using relations (4.1) and (4.3), we shall express du/G'a, and &/da, in termsof ii;,, R,, 

& and h,. After this we shall integrate the resulting expressions in a, and a, respectively, 
requiring that the condition v IL. = 0 holds. This will yield 

2m % 
u (5, Y, a,, ax) = --$ !I if, (4 a,) h, (x, I, t, ~$1 dt 

b,(C V) 

or 

(4.4) 

(4.5) 

where I, KV are obtained from formulas (4.2). 
The WF h, and h, were obtained in /6/ and transformed to a form suitable for calculation 

in /7/ (a misprinted expression for h, in /7/ should be corrected, namely, in the last term 
the numerator and denominator should be interchanged). 

Expressions (4.4) and (4.5) yield the same quantity V(Z, Y, es, a& However, all the 
above formulas were obtained on the assumption that a,(@,, therefore the lower limit on the 
right-hand side of (4.5) must satisfy the condition a,< b,(y, x), or-xs+yZ> aS2, i.e. formula 
(4.5) can be used provided that the point x, y lies outside a circle of radius a,. 

5. Let us consider a semi-elliptical surface crack whose plane is perpendicular to the 
surface of the plate of thickness H. We shall assume that the centre of the ellipse is not 
displaced by the load and the crack contour remains semi-elliptical, i.e. only the magnitude 
of the semi-axes a, and a, change. The values xX* and &* corresponding to the parameter 
ex f are connected by the relation (A* is the surface of the semi-ellipse) 

%* (a,, a,) = 4 5s k,* (E, rl, a,, aK) u, (E, 9) dA 
A* 

(5.1) 

The WF h,* is obtained by multiplying h, by the correction function 16, 7/. We must 
remember here that the correction function used in the present paper differs from that used 
in /7/ by a factor of 2. 

Let US write the formula for the opening of the crack at its centre 6 = 2u (0, 0, a,, a,), 
obtained from formula (4.4) taking into account the expression for the correction function f, 
/6, 7/ 

(5.2) 

The opening of the crack was calculated using formula (5.21, for the cases of extension 
and flexure of the plate. The results obtained are compared with the opening 6* of a crack 
inclined to the y axis, calculated from the data in /l/ (or from formula (2.1)). Fig.1 shows 
the dependence of h = a,/(%~& on the parameter x = 6*/6 characterizing the effect of the 
form of the crack on its opening when the depth a,. is given, for H/n, = 3 (the dashed line) 
and Ella4 = 100 (the solid line), for two types of stress state (1 denotes extension and 2 
denotes flexure). Using Fig.1 we can determine the opening of a semi-elliptical crack with 
parameters a. and ay by dividing the opening of a skew crack of depth a, by the corresponding 
form parameter x. We note that the relative size of the crack and the plate thickness sub- 
stantially affect the magnitude of x. 
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Fig.1 Fig.2 

6. We derived in Sect.4 formulas for the opening of an elliptical crack in the case 
when I&(&Y) is an even function, i.e. in the case when the centre of the ellipse is not 
displaced when a load is applied. If this condition does not hold, then following /6/ it is 
necessary to consider a crack characterized by four parameters a,,a,, a,, a, (Fig.2). 

The WF corresponding to the parameters a,, aB, have the form 

a, = 
as+ a4 ., ay=- 2 

a1 - Q3 

2 , Y=Y’- 
QL--a4 

2 

The SIF are written thus 

&,, = 2 5s h1.z (XI, Y', al, ~2, as, a4)o,(m', Y') dA 
A 

and the displacement ofthecrack edge is 

2na 4 
u=Y 

B’ \ 
iz, (t, a2, as, a4) hi (x’, br’, t, a2, aa, a4) dt, 

b:+ 

zna, b- 
?7=E' 

5 
iZ*(ar, t, as, up) ha (x’, y’, al, t, aa, aa) at, X’ <y 

-=* 

b,* = [2x’ 2 al (1 - 5 (y))l (1 + 5 (YV’l i = 17 2 

It is clear that the quantity v found using the WF h,,h, corresponding to the parameters 

a,, a4 is identical with the one given above. 
The numerical work was carried out by E.A. Berezina. 
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